

FilmWord: A Semantic Movie Search Engine
Seth Polsley, Ninghao Liu, and Someiah Bahrami

1. Introduction and Motivation

The entertainment industry is massive, with the US media and entertainment market alone
posting over $500 billion dollars in revenue in 2014 , a number which has only grown in recent 1

years. Because of the popularity of media such as films in today’s culture, multiple related
markets have appeared taking forms such as movie reviewers like MetaCritic, knowledge bases
like iMDb, or rating sites like RottenTomatoes. However, despite the popularity of these tools,
searching and exploring is still extremely limited. Some websites allow searching by genres or
may have a small section of “similar” films on a movie page, but their search feature is often
restricted to names of films or people, meaning that many query terms people associate with a
film that are not directly in the title will return no results.

FilmWord is a semantic movie search and exploration engine. It places emphasis on the words
users have associated with a given movie based on reviews and plot synopses, while also
supporting traditional searching methods using title and actor names. This combined approach
allows FilmWord to return a set of highly relevant films to very vague queries. In addition to
supporting flexible, free-text searches, FilmWord uses powerful visualizations to encourage
users to explore. These include word clouds and charts that link to new, related query terms.
Furthermore, related films are recommended from each movie’s page based on popular terms
associated with the film, capturing subtleties beyond similarities in genre or cast.

In the remaining sections, we’ll briefly introduce some related work in the area of semantic
retrieval and explore some of the existing movie search tools provided by popular websites
today. After that, we will cover the implementation of FilmWord in greater detail, discussing the
data acquisition, analysis and modeling methods, and the application. Finally, we’ll close with
some results studying the system performance amidst some concluding findings.

2. Prior Work
2.1. Semantic Retrieval

In semantic retrieval, given the query input by a customer, we want to extract the semantic
meaning behind the query words and return the films that match relevant concept. The Latent
Semantic Indexing (LSI) model [1], which is based on the SVD of the document-word matrix
X=UDV​ , is an option for solving such problems. Here ​U is the document-feature matrix, ​D is a
diagonal matrix and ​V is the feature-word matrix. Films of similar genres have similar latent
semantic representation in ​U​ , and are close to each other in the latent space [2]. Another
popular model for such problem is Latent Factor model [4], where ​X=PQ​ . Here ​P
(document-feature matrix) and ​Q​ (feature-word matrix) are nonnegative matrices. We
implemented the Latent Factor model with nuclear norm normalization. Given a query, the
vector ​q​ is constructed as follows:

1 http://selectusa.commerce.gov/industry-snapshots/media-entertainment-industry-united-states.html

Polsley, Liu, Bahrami | 2

(w)q = ∑

i=1
q i

where ​w​ i​ is the ​i​ th query word, and ​q(w​ i​) is the corresponding column in ​Q​ . The relevancy score
of a film ​j​ to the query is:

cj = pj · q
so the films with larger ​c​ j​ are returned on the top.

2.2. Crowdsourcing
After building the Latent Factor model, we found a more efficient alternative way for capturing
the desired data. We found that the latent information of a film is already implicitly contained in
the reviews provided by users and critics on websites like iMDb and RottenTomatoes. Given a
user query, we can retrieve relevant films based on the the text in their reviews. This
mechanism falls into the category of crowdsourcing. Defining the crowdsourcing system is a
little challenging given the broad applications of crowdsourcing, but we apply the definition
provided by [3] which refers to the system that “enlists a crowd of users to explicitly collaborate
to build a long-lasting artifact that is beneficial to the whole community”.

2.3. Existing Movie Search Engines
Most existing movie search tools have no support for semantic retrieval. For instance,
RottenTomatoes, which aggregates reviews from critics and users into an overall film
“freshness” score, searches only on movie title. The Internet Movie DataBase (iMDb) houses
enormous amounts of factual data regarding almost every movie or television show ever
created; iMDb searches only on title and actor names. This limitation is nearly all-pervasive in
the movie search engine area, but Google recently began providing slightly more flexible movie
searching. A Google query like “recent sci fi” films can return popular films of the specified
genre by year. Unfortunately, that is about as complex as a query can be before no direct
results can be found. FilmWord differs from all of these systems by having a
semantically-inspired model of each film in its index.

3. Implementation
FilmWord was built in stages, beginning with the acquisition and analysis of our data. This data
was then stored in the open source searching system Apache Solr. Solr powers the web
frontend of FilmWord, which is written in Javascript and HTML/CSS. More details on each
stage of the implementation are given below.

3.1. Data Collection and Modeling
The data collection consisted of gathering movie information like name, cast, writers, directors,
and reviews by crawling RottenTomatoes top movie lists. As mentioned previously, FilmWord
places emphasis on words of users to support semantic searches, so it is essential to find the
keywords and their related weights from the reviews.​ We performed some additional analysis in
Python in order to build an indexable model with the goal of storing each film with a collection of
popular keywords. This model allows FilmWord to much more flexible queries than typical
movie search engines.

Polsley, Liu, Bahrami | 3

For all reviews of a given film, we constructed a mini-corpus of terms that were tokenized and
lemmatized. Initially, these terms were also stemmed, case-normalized, and matched against
words in a large spell checking lexicon. Unfortunately, this level of processing lost too much key
information between films; words like “terminator” and “terminal” may both stem to “term” but are
very different. Hence, we stopped at lemmatization for the text normalization. Each mini-corpus
was converted into a Frequency Distribution using the Natural Language ToolKit (NLTK) module
for Python. The top 30 terms were then selected and filtered to only words of length 4 or more
characters. The keywords were stored with the film information and reviews directly into
Apache Solr using the Python library SolrPy.

3.2. Methods and Algorithms
FilmWord is a web application. All retrieval and processing is handled by the Java-based Solr
on the backend while the frontend performs final processing in Javascript. Users interact
through two main pages: a search page and a movie page.

3.2.1. Search Page
The search page is the heart of FilmWord. We elected not to distract the user with fields like
“Search by title” or “Search by actor”, opting instead to present a single, clean, integrated
search bar. Once a user starts to type, query suggestions are provided through three tiers of
interaction with the Solr server. First, Solr’s “suggest” feature is used to find potential film title
matches through a fuzzy analyzer. Second, suggest provides possible actor names using a
word-level analyzer to find names that match any part of the search query. Both of these
suggestion features are powerful, but they cannot provide suggestions in all cases since the
search bar is free text. For this reason, we rely on Solr’s “spell” feature as a third tier. The spell
checker is based on a dictionary of around a million user reviews, and can provide common
term suggestions for nearly any input the user provides.

After a user presses enter or selects from the dropdown menu of suggestions, a query is sent to
Solr. Queries are themselves performed in two tiers. First, a direct match is sought in the
collection of movie data. This includes matching with titles, actor names, and terms in the
synopses or keywords lists. Keywords already provide some semantic context to search terms
at this stage, but the next tier can handle even more vague queries. Should no matches be
found in the movie collection, an altered query is sent to the database of user reviews. Here,
we seek reviews containing the query terms, which are then grouped into potential film matches
according to Solr’s “grouping” feature. This level of searching allows users to find films by terms
which may be commonly associated with a film that are not popular enough to be classified as a
“keyword” in our model.

From a user’s perspective, this experience is transparent. Users simply input a query, receive
appropriate suggestions, and get a list of relevant films. Most interaction on the search page is
concerned with the resulting movies and the visualizations. Movies are listed on the left in order
of relevance, and visualizations are provided on the right. With each movie is the critic,

Polsley, Liu, Bahrami | 4

audience, and overall score (computed as 1-part critic score to 3-parts user score); the release
year; and the synopsis.

Two major forms of visualization are provided with each query. The first is a set of two donut
charts which shows the distribution of genres and keywords in the result set, using Solr’s
“facets” feature. The second visual is a word cloud for each film. These word clouds are
weighted according to the keyword frequency in the user reviews, and they immediately show
the most popular terms associated with each film on the page and their relationships with each
other. To make interaction even simpler, users can click on any term of interest and receive a
new result set for the selected term. This makes exploring very easy, and users can learn a lot
of information about related films without ever leaving the search page.

3.2.2. Movie Page

Once the user wishes to investigate more about a given film, he or she can click on any movie
in the result set from the search page to bring up the movie page. Movie pages are dynamically
generated for each film. All of the database information is displayed, again including the title,
ratings, year, and synopsis. The complete synopsis is shown on a movie page, along with all
other information like the film’s genre, directors, writers, and cast. Rather than being static text,
each of these items links to a new query on that term. This allows users to return a set of films
associated with a given actor simply by clicking on a name or to find other films in the same
genre. The word cloud based on keywords is also shown on the movie page; because there is
more screen space, the word cloud is much larger so users can see and interact with more key
terms.

Figure 1: A portion of the movie page for “Monsters, Inc.”

In addition to receiving all the movie information from Solr, two other features are used on the
movie page. First, the “You May Also Like” section is created using Solr’s “More Like This”
feature on the keywords field. This allows FilmWord to provide recommended similar films that
capture much more information than just genre or rating. For instance, keywords allow
differentiating animation films like “Tangled” and “Nightmare Before Christmas” so that both

Polsley, Liu, Bahrami | 5

films have appropriate recommendations. These recommendations are also very effective at
finding other films in the same series or projects with the same actors, directors, or themes.

Finally, the movie page also provides a mechanism for viewing the reviews for a film. Again,
facets are used to generate a histogram of ratings from 1-5 stars, and Solr’s sorting and filtering
features are used to show both a positive and negative review directly on the movie page. By
selecting the “See all reviews…” link, users can read each review stored for a film.

4. Results and Findings
We have seen in the previous discussion of related works and implementation how FilmWord
differs from other movie search systems, but let us now consider some specific examples and
results to evaluate the overall system performance. Because Solr is very adept at matching key
terms, a sample search like “lord of the rings” can return all three Lord of the Rings films
(including the three Hobbit films) at the top of the list. Likewise, searching by an actor or
director name will return related projects. These types of searches are simple and readily
available through RottenTomatoes and iMDb since they only match against title terms or
names.

FilmWord is a much more powerful search engine when users are putting in free text terms
where semantics matter. For instance, a user putting in the query “wands” may be anticipating
films which have wizards and magic. Rotten Tomatoes simply returns results based on the
movie titles (maybe with some spell checking), while FilmWord recognizes the magic flavor of
“wand” and returns the Harry Potter movie series. Because RottenTomatoes could not find any
English films with the term “wands” in the title, several obscure German movies were the only
results returned, which are unlikely to be relevant to the user.

Figure 2: A comparison of the results returned by RottenTomatoes and FilmWord for the query “wands”

FilmWord can also make use of keywords to find relationships among films where none would
otherwise be found. For instance, the director Tim Burton and actor Johnny Depp have
collaborated on a number of movie projects, which could be useful information to a user trying to
find a set of related films but not ones in a single series. If we input “burton and depp” in this

Polsley, Liu, Bahrami | 6

case, we can assume the user wants films directed by Tim Burton and acted by Johnny Depp.
In this case, the search engine in IMDB can only provide an episode name from a small
television series that happens to have both these terms. However, FilmWord successfully
returns the films we want, as we see in the movie page of “Sleepy Hollow”.

In fact, the user doesn’t need to know about the frequent collaboration between Tim Burton and
Johnny Depp to get relevant films in FilmWord. The “You May Also Like” section on any one of
their films’ pages will have automatically found the similarity to other Burton and Depp films and
recommend them to the user. As we mentioned before, this feature is also very good at finding
other films in a series while still capturing the subtle differences among films.

Figure: A comparison of iMDb and FilmWord when querying “burton and depp”

5. Conclusion

Given the size of the movie and entertainment industry today, it is perhaps a little surprising that
movie search engines are still so naive that they can only perform matching against direct fields.
However, semantic retrieval and recommendation systems are two fields that have only recently
began to see major advances, at least to the comparatively ancient movie industry. In this work,
we show that by using the richness of data like textual movie reviews, a system can learn at
least some level of semantic understanding of user queries. FilmWord combines this
understanding with the existing field-matching searching of systems today to give users a
simple, streamlined movie searching and exploring experience.

References:
[1] Deerwester, Scott, et al. "Indexing by latent semantic analysis." ​Journal of the American society for
information science​ 41.6 (1990): 391.
[2] Xu, Wei, Xin Liu, and Yihong Gong. "Document clustering based on non-negative matrix factorization."
Proceedings of the 26th annual international ACM SIGIR conference on Research and development in
informaion retrieval​ . ACM, 2003.
[3] Doan, Anhai, Raghu Ramakrishnan, and Alon Y. Halevy. "Crowdsourcing systems on the world-wide web."
Communications of the ACM​ 54.4 (2011): 86-96.
[4] Koren, Yehuda, Robert Bell, and Chris Volinsky. "Matrix factorization techniques for recommender
systems." ​Computer​ 8 (2009): 30-37.

