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ABSTRACT
Big data is becoming increasingly important in the
modern world due to the amount of technology used
in everyday life.  Yet, it’s potential for learning new
information has been relatively untapped due to the
complexity of dealing with such large amounts of
data.  This work explores the implementation of an
integer neural network in hardware, demonstrating the
advantages that can be achieved both by reducing the
complexity of machine learning computations and
using these simplified algorithms as the basis of
dedicated, high-speed machine learning components.
The classifier is applied to big data from an analytics
perspective by trying to predict care costs from
healthcare data, which was selected in order to show
the breadth of information that can be gathered from
big data.  The hardware implementation of the neural
network does show dramatic speed advantages but its
increase in cost leads to a co-design approach that
achieves nearly the same benefits at reduced cost, and
the cost predictor indicates that there is a great deal of
relevant data to be used for expenditure prediction,
although the specific model used could be improved.

1. INTRODUCTION
Big data is everywhere. Increasingly, there are
overwhelming amounts of data being generated each
day due to technologies like electronic record-
keeping, mobile cameras, and a wealth of digital
sensors. In the field of healthcare alone, a vast
collection of data about individuals’ health and
activities is provided by all kinds of digital
equipment, and healthcare organizations are
attempting to leverage this data by interpreting their
records with machine learning techniques. There is a
huge potential for knowledge in healthcare analytics,
knowledge that can keep doctors and patients better
informed. For instance, Google Flu Trends can be
used to track the spread of conditions like influenza
across the country [1].

However, all kinds of big data analytics face
challenges. On massive datasets, machine learning
algorithms may run very slowly. For example, many
algorithms in speech processing, image processing,
and pattern recognition exist but are slow due to
computational complexity [2]. The software is being
pushed to the limit, and in order to meet faster
processing demands, hardware implementations are
becoming necessary. In this work, the authors
explored the hardware implementation of a specific
machine learning tool: the neural network.
Specifically, an integer neural network (INN) was
designed and tested; INNs have several advantages
over traditional neural networks, among them being
performance and cost advantages due to reduced
complexity.  Their lower complexity also makes INNs
excellent candidates for dedicated hardware
components that can be included in low-cost systems
which would benefit from built-in machine learning
capabilities.  To demonstrate a practical application of
this component in a field that could gain much from
high-performance learning, it is used as the basis for a
healthcare expenditure predictor.

2. PREVIOUS WORK
As the field of machine learning grows, researchers
have begun to experience software’s limitations.
Several groups have published work on implementing
machine learning classifiers in hardware due to the
outstanding performance gains. Mahmoodi et al. [3]
proposed a simple hardware architecture for
implementation of pairwise SVM classifier on FPGA.
In the architecture, vector multiplication and pairwise
classification are designed to run in parallel. Reyna-
Rojas et al. [4] chose to implement the SVM classifier
on an SoC platform in order to exploit the parallel
nature of the SVM algorithm.

Other classifiers have also been studied for their
benefits as hardware components. Most relevant to
this paper, Eberhardt et al. [5] created a hardware
neural network to gain advantages from the



algorithm’s parallelism as done in [3]. In Jung and
Kim [6], the authors showed that their hardware
neural networks were well-suited to real-time
applications. There is even a commercially-available
neural network chip provided by Cognimem, which
has been used effectively in hardware-software co-
designed systems [7]. Sun and Cheng [8]
demonstrated a fast and efficient neural network in
hardware within the field of healthcare, using their
system to analyze patient’s cardiograms to detect
abnormalities that could lead to heart attacks or
disease.

Additionally, many hardware neural networks are
variants of the standard algorithms which use integer
calculations only, called integer neural networks, or
INNs [9].  INNs have been becoming increasingly
popular in recent years for their numerous advantages.
There is an inherent speedup available to INNs
because of the removal of all the floating point
calculations [10].  FPUs are also quite expensive, so
these neural networks are ideal for low-cost solutions
[11].  Unfortunately, training integer-based networks
is more difficult because weight updates may not
propagate well using a discretized function, a similar
problem experienced in deep learning where weight
updates may underflow and not propagate.  While
some new algorithms are being developed for training
integer weights [12], most systems work by first
performing offline training on a standard neural
network and then scaling the weights and activation
function to integers using a defined bit resolution.

Using machine learning, it is possible to predict much
more from healthcare data than just patient risks for
certain illnesses. In [13], Shang and Goldman used
age and life expectancy to predict a patient’s care
costs. Others have studied the effects of conditions
ranging from rheumatoid arthritis to morbid obesity,
as seen in [14] and [15], on healthcare costs. There are
many other possible factors that may be considered
when using healthcare data to predict financial
information, such as patient gender or race [16][17].
This work considers several common features that are
present in most health records, many of which have
been shown in previous studies to be contributing
factors to cost.

3. PROPOSED WORK
As seen in the previous section, there has been
considerable research over the past few years
studying the benefits of hardware implementations of

machine learning classifiers. Also, much research has
been done in the field of healthcare analytics to study
care costs. In the proposed work, we seek to combine
these two ideas using hardware-software co-design to
find a fast and efficient solution. That is, we hope to
gain the performance boosts afforded by the
hardware-based classifiers and tie them to the
practical information gained by statistical machine
learning. To our knowledge, while hardware-based
classifiers and software-based care prediction have
been studied in some depth separately, they have not
been combined in a co-designed system to improve
the performance of these often-slow software
operations. It is also our hope that the healthcare cost
estimation technique will be novel in its simplicity
and capable of performing nearly as well as methods
published in other research.

The proposed work is divided into three phases. The
first phase consisted entirely of the software model.
This includes the implementation of a standard neural
network and a less-complex integer neural network.
Both networks were tested on a widely-used digit
recognition dataset before being used to build the data
model.

The second phase focused on re-implementing the
software INN as a hardware component.  The
machine learning model created in the first phase is
unchanged, using the same data and feature set.
However, this phase did include evaluation of the
hardware implementation, using timing gathered from
both the Carbon Design System’s virtual prototyping
tools1 and Xilinx’s ModelSim2.

The final phase was developed concurrently with the
other two.  It was focused on acquiring and cleaning
the healthcare data.  A model to represent the most
relevant data for the desired problem of cost
estimation also had to be constructed.

4. IMPLEMENTATION
Phase I – Software Implementation

The first task was the development of a software
neural network. This neural network was written in
C++ for sys tem por tabi l i ty and inc luded
implementations of standard floating-point algorithms
like backpropagation for training. To test the validity
of the implementation, it was trained and tested on a

1 http://www.carbondesignsystems.com
2 http://www.xilinx.com



well-known machine learning dataset—the MNIST
handwritten digit database3, a subset of which is
shown in Figure 1. It was tested alongside the open-
source Weka toolkit (Waikato Environment for
Knowledge Analysis). Weka is a flexible tool
developed by the University of Waikato that can be
used for testing a variety of machine-learning related
analyses. As found using Weka and supported by a
number of publications, neural networks perform very
well on the MNIST dataset, often achieving
accuracies close to 100%.  The neural network written
by the authors of this work performed favorably as
well, achieving 96.94% accuracy from a single
training session.

Next, an INN was built by modifying the existing
network to use integer-based calculations.  As
discussed in the previous work, backpropagation is
not typically used for INNs because of bit resolution
limitations leading to poor weight updates.  While
some newer training methods for INNs are being
developed, the INN implemented in this case was
designed to convert the trained network created from
the floating-point calculations into one that could be
used with an integer-based feed forward method for
classification.

3 http://yann.lecun.com/exdb/mnist/

Some special considerations must be made when
building an INN from a standard neural network.
Even without using backpropagation for training, the
feed forward technique can be complicated.  It
involves propagating neuron values from layer n - 1 to
layer n, multiplying each neuron’s value by the weight
associated with the edge between the neuron at n - 1
and the neuron at n, and then normalizing all of those
values to a new “activation” value of the neuron.  As
the name implies, these values specify how activated
the neuron is, and they propagate forward through the
network using weights in the same technique that was
just described. Typically, activation values are
determined using an activation function.  These
functions must be able to map any input from
negative to positive infinity into a bounded value,
usually between -1 and 1 in floating-point networks.
Most good activation functions experience the most
extreme change near the origin and have little change
at very low or high values; the sigmoid or hyperbolic-
tangent functions are often used.  Because of the non-
linear nature of these functions, INNs will often
precompute and scale the values to be stored in a
look-up-table (LUT).  The LUT produced for the
healthcare data is shown in Figure 2 along with the
actual sigmoid curve.  This discretization process
demonstrates the issue with using integer-based
backpropagation, since weight updates are based on
the derivative of the activation function.  When scaled
for integers, almost all of the weight updates would be
zero outside of the rapidly changing center of the
sigmoid; floating-point calculations capture such
small updates much better, until overflow becomes a
problem in deep networks.

The feed forward algorithm also needs integer
weights, so these too are scaled from the weights
calculated from the original neural network.  When
determining the scale for the weights and the
activation function, it is important to consider the size
of the network.  In C++, integers are 4 bytes, so the
activation function must be able to accept any 32-bit
value as an input.  Layer sizes, weight resolution, and
activation function resolution must all be carefully
balanced to ensure there is no overflow, which would
corrupt the output at the current layer and prevent
proper classification.  For any given neuron, the
maximum value that may be generated from the feed
forward algorithm is the number of neurons at the
previous layer times the maximum value for weights
times the maximum value of activation.  That is, the

Figure 1: Visualization of examples from the
MNIST handwritten digit dataset



INN must be defined such that 2^n * 2^w * 2^a does
not exceed 2^32.  Selecting the bit resolutions of w
and a must be done carefully in order to minimize the
loss of accuracy that comes from converting to a
discrete scale.

The INN was written to be able to convert the weights
and inputs of any generic network to any bit
resolution.  It also automatically generated a LUT for
the activation function at the desired resolution.  To
test the INN, the same digit recognition problem was
run using 12 bits for the weights (+/- 2048) and 12
bits for the activation value.  The final accuracy was
96.14%, which demonstrated a loss in accuracy of less
than a percent.

Phase II – Hardware Implementation

With the software already written, this portion of the
project was focused on porting the INN to the Carbon
Design tool and building a Verilog representation that
could be synthesized into a standalone INN
component.  Running the INN on the ARM Cortex A9
was accomplished by modifying the existing code
base for the sort algorithms.  The feed forward and
activation lookup functions replaced the sort
algorithms and the semi-host controller was used to
read necessary values from the hard drive into the
simulator (including the network parameters and the
test data).

Once the software had been fully tested, a Verilog
INN was written.  This iteration of the INN operated
in much the same way as the C++ version, but at this
point, the parameters were hard-coded in the network.
Loading the parameters could be very slow using a
serial protocol like APB, and since that stage was
unimportant for the feed forward timing, parameter
loading was bypassed.

The Verilog INN was tested first using Xilinx’s
ModelSim.  Test data was written to the INN chip in
the testbench and the result was read at its output.
After testing, a Carbon component was built using
ModelStudio that could be imported into Carbon
Design.

Phase III – Healthcare Data Processing

In order to apply the INN to cost prediction, a model
for the healthcare data had to be established.  Before
that, the data had to be acquired and cleaned. The data
used in this application was selected from the Texas
Inpatient Public Use Data File (PUDF). This is a large
data set with patient records from all over Texas,
detailing hundreds of features. A portion of data from
the first quarter of 2012 from the base one of the
PUDF set was used. While this trimmed down the
number of patient records from millions to about
250,000, there were still over a hundred features per
record. This would yield poor results in many
machine learning applications, so a subset of features
was selected. Based on work from [9] and [12],
common features such as gender and age were
chosen. Additional features included information
directly tied to healthcare charges, such as patient
diagnosis and length of hospital stay. An additional
record was kept from the data set, which was the total
charges column. This was later taken as the desired
output for supervised training of the neural network
for cost estimation. To remove anomalies from the
data, all blank fields were filled in with an empty
value and all features were normalized between 0 and
1 using Matlab. Such scaling ensures uniformity for
the network as well as simplifying the task of scaling
inputs to the INN later at the appropriate bit depth.

To find the best model for the data, multiple tasks
were tested using different features, classifiers, and
cost distributions. Appendix A shows the listing of
tasks and their specifications. The accuracy of each
task on the dataset is shown in Figure 3. Task 1 was
designed to test the accuracy using a large number of
feature vectors with high granularity on the output,

Figure 2: The standard Sigmoid curve (red)
shown against a discrete estimation of the curve
saved in a LUT (blue)



hence the increased number of output classes. This
performed poorly, so the other tasks were tested
against a reduced number of outputs. The new
distribution of outputs yielded a very uniform result,
as shown in Figure 4. Tasks 2 and 3 were intended to
test a reduced feature set on the new outputs, but they
too performed less well than desired. Task 4 includes
a large number of features with the five output classes
and performs much better. To demonstrate how this
model performs against a random chance classifier,
task 5 used the same feature set as task 4 with only a
random output. As expected, with five steps of
healthcare expenditure that are fairly evenly
distributed, the random-chance classifier only
achieves about 20% accuracy.

Task 4 was the best model by a far margin, so it was
used for the remainder of the experiments. The
selected bin edges were (in dollars): 10000, 20000,
35000, 60000, 100000+. Each record was grouped
into the bin for the edge it was nearest to but not
exceeding.  Figure 4 shows the final distribution for
the data.

5. RESULTS

The initial testing results from the MNIST
handwritten digit dataset were reported in the
previous section, but to reiterate, the standard neural
network and the INN implementations achieved
96.94% and 96.14%, respectively.  The loss in
accuracy was minimal for this problem.

The final model for the healthcare data was first run
through the standard neural network in order to train
weights. The constructed network had 13 input
neurons (corresponding directly to the cleaned and
scaled 13 input features), 25 hidden neurons, and 5
output neurons.  The final accuracy was 43.43%.
While there is certainly room for improvement, this
accuracy shows that some important information is
being captured.  As Figure 4 shows, the data is
roughly uniformly distributed, so a random classifier
should achieve approximately 20% accuracy, as
demonstrated by task 5 in Figure 3. This model
achieves over twice that accuracy.

All of the network parameters were then saved and
scaled to be compatible with an INN with 13x25x5
neurons.  The weights were given 12 bits of resolution
for the healthcare data, but the activation LUT was
only given 6 bits.  This reduction in resolution was
motivated by the goal of reducing the memory space
required to store the LUT in memory.  Unfortunately,
reducing the bit resolution did come at the cost of
reduced accuracy.  The INN achieved only 37.13%

Figure 3: Average task accuracies using the
classifiers, features, and cost distributions
described in Appendix A

Figure 4: Distribution of healthcare data along
the defined cost categories



accuracy on the same data using the same parameters
with integer scales.  While the 6% loss in accuracy is
not as insignificant as the loss experienced in the first
test dataset, it did come with the advantage of
reducing the activation LUT by nearly two orders of
magnitude in size. The size was an important
consideration for using the Carbon Design tool, so the
reduced resolution was ultimately selected over the
higher accuracy.

All of the previous results focused on showing the
validity of the networks’ implementations and that
some of the features of the healthcare data could be
used to predict costs. Finally, some timing
information was gathered to compare the performance
of the software, hardware, and co-designed solutions.
Energy was also estimated using the estimation of
power of time (P*T). The power of the Cortex A9 was
estimated as 0.5W, according to the values given in
[18]. Cost was very roughly estimated as the number
of individual hardware units that would need to be
manufactured for a given solution; this rough
approximation does not factor in the complexity of
each component in the current model.

The standard neural network was not included in this
experiment. As mentioned before, many embedded
system applications prefer INNs because the ability to
perform neural network operations without an FPU
can dramatically reduce cost.  Thus, in order to use
the ARM Cortex A9 without an FPU, only the INN
was used.

First, the software INN was run directly on the A9
with a subset of the testing data to gather timing
information.  The feed forward algorithm was run for
many iterations.  Using the reporting tools available in
Carbon Design and its cycle-accurate timing, the
average number of cycles required for a single feed
forward operation was found to be 8811 cycles, with a
standard deviation of 126 cycles.  Next, the Verilog
INN was tested in ModelSim. This implementation
was extremely fast because all of the computations at

a single layer could be performed simultaneously with
dedicated hardware.  The feed forward operation took
only a single cycle in these tests and did not exceed
that at any time. Figure 5 shows the timing diagram
generated by ModelSim. The test data is first read into
the INN chip and then once it has received an entire
sample, it performs the classification. The relevant
region is outlined and shows how quickly the
classification is achieved after all the inputs are
received.

The pure software solution was too slow and energy-
inefficient, even though the cost was small.
Unfortunately, the hardware solution, while being
extremely fast and therefore more energy-efficient,
requires a large amount of complex hardware and can
be very expensive. A co-designed solution can find
the best combination of these methods, so the
hardware INN was tested next in the Carbon Design
tool. By having all of the preprocessing handled in
software, the complexity of the INN could be reduced
significantly. Having part of the processing in
software did increase the cycle time to 85 cycles, but
this was a vast improvement over the purely software
model while maintaining the lower-energy
consumption of the hardware and reducing cost.
Figures 6 through 8 show a comparison of all three
metrics across the software, hardware, and co-
designed models.

Figure 5: ModelSim timing diagram for the Verilog INN



6. DISCUSSION

The software implementation of the INN was very
slow compared to the hardware version. When
working with smaller sets of data, the limitations of
software are not always that apparent.  Even from the
results gathered here, 9000 cycles would take fewer
than 5 microseconds on a modern 2 Ghz processor.
While that may be imperceivable by itself, as the
amount of data grows, those 5 microseconds add up
and become very significant, and researchers working
with big datasets frequently do experience the
limitations of software that become apparent when
that happens.

Conversely, the hardware INN chip was extremely
fast. Having dedicated circuitry for all of the
calculations made the 5 microsecond operation occur
in nanoseconds.  This is an enormous time saving and
could scale up very well to working on large datasets.
However, cost and power are also significant concerns
in co-design, and they influence how much dedicated
hardware will be included in any system. While
removing the FPU by using an INN will save energy,
the cost of the pure hardware approach is still very
high compared to a co-designed solution. The co-
design approach is the best combination of each.

The classification results on the healthcare data also
showed that some relevant information exists that
could be used to predict care costs.  The accuracy was
certainly not as high as it could be, and there is much
room for improving the model. Regardless, it
performed well above a random classifier and
demonstrates that more information can be collected
from healthcare data than just information for disease
detection or predisposition. Such results exemplify
why big data is becoming a very important discussion;
big data techniques could be used to detect, predict,
and understand so much new information beyond
what is visible on the surface.

7. CONCLUSION

This work focuses on big data from two perspectives.
First, it uses big data as an analytics tool to attempt to
learn new information.  In this case, the question was
if healthcare data could be used to predict more than
traditional “health” information; could it be used to
look at the economics of healthcare?  A data model
was generated that attempted to capture the most
relevant features that indicated expected healthcare
expenditures. While the results showed that the model

Figure 6: The number of cycles required for a
single feed forward computation on each
platform.

Figure 7: Estimated energy consumption of each
platform, using the 800MHz processor speed of
the dual-core A9 found in Carbon Design.

Figure 8: Approximated cost based on the
number of hardware units specifically designed
for each platform.



and classifier could be improved, they did
demonstrate that there is important information to be
gathered beyond just health data by performing well
above a random-chance classifier.

Second, big data was viewed from an optimization
perspective. While many machine learning algorithms
and tools have been heavily optimized to work as
quickly as possible in software, there are still
limitations. Those speed limitations become very
apparent as the amount of data grows, so a hardware
neural network was synthesized and prototyped in a
virtual environment to show its benefits. The
hardware network could perform a massive number of
operations in parallel and increased performance
dramatically.  However, due to its increased cost, a co-
designed solution was found to be the best
combination of software and hardware that could still
achieve enormous performance benefits.
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Appendix A: Task Specifications
Task 1

Classifier Neural Network

Fields THCIC_ID, PUBLIC_HEALTH_REGION, TYPE_OF_ADMISSION, SPEC_UNIT, PAT_AGE,
PAT_SEX, PRINC_SURG, APR_DRG, LENGTH_OF_STAY

Cost Division 5000,10000,15000,20000,25000,35000,45000,60000,80000,100000,200000,200000+

Accuracy 15.11%

Task 2

Classifier Neural Network

Fields TYPE_OF_ADMISSION, PUBLIC_HEALTH_REGION, SEX_CODE, LENGTH_OF_STAY,
PAT_AGE, PRINC_DIAG_CODE

Cost Division 10000,20000,35000,60000,60000+

Accuracy 22.29%

Task 3

Classifier Neural Network

Fields MS_MDC, MS_DRG, APR_MDC, APR_DRG, RISK_MORTALITY, ILLNESS_SEVERITY

Cost Division 10000,20000,35000,60000,60000+

Accuracy 22.18%

Task 4

Classifier Neural Network

Fields TYPE_OF_ADMISSION, PUBLIC_HEALTH_REGION, SEX_CODE, LENGTH_OF_STAY,
PAT_AGE, PRINC_DIAG_CODE, POA_PRINC_DIAG_CODE, MS_MDC, MS_DRG,
APR_MDC, APR_DRG, RISK_MORTALITY, ILLNESS_SEVERITY

Cost Division 10000,20000,35000,60000,60000+

Accuracy 43.43%

Task 5

Classifier Random-Chance Classifier

Fields TYPE_OF_ADMISSION, PUBLIC_HEALTH_REGION, SEX_CODE, LENGTH_OF_STAY,
PAT_AGE, PRINC_DIAG_CODE, POA_PRINC_DIAG_CODE, MS_MDC, MS_DRG,
APR_MDC, APR_DRG, RISK_MORTALITY, ILLNESS_SEVERITY

Cost Division 10000,20000,35000,60000,60000+

Accuracy 19.29%
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